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Evolutionary developmental biology

The origin of a new fin skeleton
through tinkering

Thomas A. Stewart†

Department of Organismal Biology and Anatomy, University of Chicago, 1027 E. 57th Street, Chicago,
IL 60637, USA

Adipose fins are positioned between the dorsal and caudal fins of many tel-

eost fishes and primitively lack skeleton. In at least four lineages, adipose

fins have evolved lepidotrichia (bony fin rays), co-opting the developmental

program for the dermal skeleton of other fins into this new territory. Here I

provide the first description of lepidotrichia development in an adipose fin,

characterizing the ontogeny of the redtail catfish, Phractocephalus hemioliop-
terus. Development of these fin rays differs from canonical lepidotrich

development in the following four ways: skeleton begins developing in

adults, not in larvae; rays begin developing at the fin’s distal tip, not proxi-

mally; the order in which rays ossify is variable, not fixed; and lepidotrichia

appear to grow both proximally and distally, not exclusively proximodis-

tally. Lepidotrichia are often wavy, of irregular thickness and exhibit no

regular pattern of segmentation or branching. This skeleton is among the

most variable observed in a vertebrate appendage, offering a unique oppor-

tunity to explore the basis of hypervariation, which is generally assumed to

reflect an absence of function. I argue that this variation reflects a lack of

canalization as compared with other, more ancient lepidotrichs and suggest

developmental context can affect the morphology of serial homologues.
1. Introduction
François Jacob [1] likened evolution to the action of a tinkerer, wherein design

reflects the contingency of materials available and not simply adaptation for

function. Indeed, the modular nature of organisms seems to facilitate tinkering

[2]. Developmental modules are often redeployed in new contexts and for

new functions, and this can result in large, discontinuous shifts in phenotype

(i.e. saltation) when tissues or organs develop in locations where they were

not previously [3,4]. Although such translocations are generally assumed to

be maladaptive when observed within populations [5], there are numerous

examples of lineages having evolved new and adaptive phenotypes in this

manner [6–9]. Understanding how translocations affect patterns of morpho-

logical diversity requires documenting its instances, exploring its generative

basis and resolving the apparent lack of congruence in adaptiveness at

micro- and macroevolutionary scales [10].

Adipose fins, appendages that are positioned between the dorsal and caudal

fins of many teleost fishes, primitively lack skeleton [11]. At least four lineages

have independently evolved skeletonized adipose fins by the translocation of lepi-

dotrichia, the ossified fin rays that support the distal portion of other osteichthyan

fins, into this territory [11]. Here I describe the morphology and development of

the adipose fin skeleton of the redtail catfish, Phractocephalus hemioliopterus (Bloch

& Schneider 1801). The rayed adipose fin of P. hemioliopterus has long been noted

[12–14], but this anatomy remains uncharacterized. The adipose fin skeleton of

P. hemioliopterus exhibits diversity in its morphology and development that is

unprecedented among vertebrate appendages and informs how morphological

novelties can originate.
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Figure 1. Histology of the adipose fin of P. hemioliopterus. (a) Photograph of P. hemioliopterus by Mark Sabaj Peréz (Specimen INPA43636). (b,c) Photograph and
radiograph of the adipose fin of specimen FMNH 58032, which was serially sectioned. Red line in (b) indicates the position and orientation of histological sections
shown in subsequent panels. (d ) Actinotrichia are positioned at the distal margin of the fin, medial to lepidotrichia. (e) Lepidotrichia are medial to the epidermis
and composed of paired ossified rods, which surround a core composed of connective tissue. ( f ) In non-skeletonized portions of the fin, parallel bands of
actinotrichia sandwich the connective tissue core. (g) The left and right sides of the lepidotrichia can be asymmetrical in their length. Abbreviations: act,
actinotrichia; lep, lepidotrichia; epi, epidermis; con, connective core.
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2. Material and methods
To characterize adipose fin microanatomy, the adipose fin of

specimen FMNH 58032 was decalcified by immersion in a 10%

EDTA and 90% dH2O solution at pH 7.4 for 3 days at 48C, par-

affin embedded, serially sectioned at 5 mm thickness, and stained

with haematoxylin and eosin by the University of Chicago’s

Human Tissue Resource Center. Sections are transverse and

parallel to lepidotrichia in the adipose fin.

To generate an ontogenetic series, specimens (n ¼ 53) ranging in

size from 6.1 to 90.0 cm standard length (SL) were X-rayed, size being

regarded as a proxy for developmental stage. Adipose fins were X-

rayed in lateral aspect, radiographs were digitized, and adipose fin

area and the amount of skeleton in the fin were quantified using

Adobe Photoshop 7.0C (Adobe System, Inc., San Jose, CA, USA)

and Fiji [15] (electronic supplementary material, figure S1). A

linear regression was used to test for correlation between the

amount of skeleton in the adipose fin and SL. Analysis of covariance

(ANCOVA)wasused to test whether wild andaquarium individuals

differed from one another in their patterns of skeletal growth with

respect to SL. Statistical analyses were conducted using R [16].
RSBL20150415—27/6/15—16:21–Copy Edited by: Vinithalakshmi J.R.
3. Results
Lepidotrichia in the adipose fin of P. hemiolopterus are composed

of bilaterally paired ossified rods (hemitrichia), which surround

a connective tissue fin core and are adjacent to the basal surface

of the epidermis (figure 1). At the distal margin of the fin,

actinotrichia are medial to the hemitrichia (figure 1d).

Lepidotrichia contain many intra-osseus lacunae and muscles

do not attach to adipose fin lepidotrichia (figure 1e,g). Non-

skeletonized regions of the fin are supported by actinotrichia

(figure 1f).
In wild P. hemioliopterus, the amount of skeleton in the adi-

pose fin is positively correlated with standard length (figure 2a).

This is true when skeleton is measured as either an area (F1,47¼

152.4, p , 0.0001, R2 ¼ 0.5589) or as a fraction of the adipose fin

area (F1,47¼ 19.94, p , 0.0001, R2 ¼ 0.2829). Above 34 cm SL,

all wild individuals were observed with lepidotrichia.

Lepidotrichia develop at the distal tip of the fin, along its

trailing edge (figure 2b). Fin rays can begin differentiating at
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Figure 2. The development of lepidotrichia in the adipose fin of P. hemioliopterus. (a) In wild fishes, the amount of skeleton in adipose fins is significantly positively
correlated with standard length. Specimens with no skeleton are assigned a y-axis value of 22.5. (b – e) Radiographs of representative individuals varying in their
degree of ossification. Contrast has been adjusted to make skeleton more visible. Arrows in (b) indicate multiple distinct sites of ossification. Arrows in (e,f ) indicate
proximal asymmetrical ossified nodules. Specimens shown: (b) LACM 43295-52 #13; (c) LACM 43295-52 #5; (d ) MCZ 6712; (e) MCZ 7615; ( f ) ANSP 179559. All scale
bars ¼ 1 cm.
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multiple spatially discontinuous sites (figure 2b), and ossifi-

cation does not always begin at the same position within

the fin (e.g. specimens FMNH 71251 and LACM43295 #13).

In several of the more heavily ossified specimens (n ¼ 9),

asymmetrical ossified nodules are observed proximally,

and these do not extend to the fin’s margin (figure 2e,f ).

Lepidotrichia are highly variable in their morphology, fre-

quently wavy and of inconsistent width. Additionally,

lepidotrichia do not exhibit consistent patterns of segmenta-

tion or branching, and this is true both between fins and

when comparing adjacent rays. Adjacent fin rays can also

be of markedly different lengths (figure 2f ).

Aquarium-raised individuals have less skeleton than wild

individuals. This difference is detected both when adipose
RSBL20150415—27/6/15—16:23–Copy Edited by: Vinithalakshmi J.R.
fin skeleton is measured as an area (ANCOVA: F1,49 ¼ 36.218,

p , 0.001) or as a fraction of the adipose fin area (ANCOVA:

F1,49¼ 21.325, p , 0.001) (electronic supplementary material,

figure S2). However, a limited sample of aquarium specimens

precludes detailed description of their patterns of growth.
4. Discussion
Skeletal rays in the adipose fin of P. hemioliopterus were

previously diagnosed as lepidotrichia by their morphology—

approximately parallel and sometimes branching ossified

rods arranged in a series within a fin. Analysis of the micro-

anatomy of these rays provides additional support for the
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hypothesis of their serial homology. As with other lepidotri-

chia, the lepidotrichia in the adipose fin of P. hemioliopterus
are composed of bilaterally paired ossified elements adjacent

to the basal surface of the epidermis, and actinotrichia

are medial to the hemitrichia at the distal margin of the fin. Con-

vergence could explain this morphological similarity, but a

common developmental mechanism is likely. These hypotheses

should be tested with molecular developmental data.

The development of lepidotrichia in the adipose fin of

P. hemioliopterus is unique in its pattern and variation. Usually,

lepidotrichia begin developing in larval fishes at the base of the

fin by the membranous ossification of mesoderm [17,18].

Within a fin, lepidotrichia differentiate in an ordered, sequen-

tial pattern according to their position: ossification begins in

one region and proceeds to adjacent rays, either uni- or bidirec-

tionally depending on the site of initiation [19]. The site at

which ossification begins is consistent within a species, but

can vary between clades. By contrast, the skeleton of the adi-

pose fin of P. hemioliopterus begins developing in adults. This

appears to be unique among known fins, with rare exceptions

in which lepidotrichia regenerate following their complete

removal (e.g. [20]). Three other lineages that have indepen-

dently evolved adipose fins with lepidotrichia (Collossoma
macropomum, Clarotes laticeps, Pygocentrus piraya) have been

proposed to develop this skeleton in adults [13,21,22]. Regret-

tably, their ontogenies remain uncharacterized. The adipose

fin skeleton of P. hemioliopterus is also unique in that it begins

differentiating at the distal tip of the fin, ossification can

begin at multiple, non-contiguous sites within a fin, and the

site of initiation is not consistent between individuals.

In P. hemioliopterus, the proportion of the adipose fin that

contains skeleton increases as the fin grows. While several

models might explain this pattern, bidirectional growth of lepi-

dotrichia is likely. The branching of rays implies distalward

growth, and variability in the proximal portion of individual

lepidotrichs throughout the fin, specifically proximal asym-

metrical ossifications in heavily ossified fins, implies proximal

growth. This is surprising, as lepidotrichia are thought to

only grow distally. In segmented lepidotrichia, growth is

thought to proceed by the addition of ray segments, not by

changes to fin ray segment length [23,24].

The skeleton of the adipose fin of P. hemioliopterus is among

the most variable of any vertebrate appendage. No other fin

skeleton described exhibits such a complete lack of pattern in

the branching, segmentation and shape of rays, or regularly
RSBL20150415—27/6/15—16:24–Copy Edited by: Vinithalakshmi J.R.
exhibits asymmetrical ossifications. Highly variable traits are

generally interpreted to be non-functional and reflecting weak

selective pressures [25]. Alternatively, highly variable mor-

phologies could be adaptive but uncanalized. The observed

differences between wild and aquarium-raised individuals

implies plasticity, suggesting that the stimuli required for

induction and maintenance of growth for this new fin skeleton

is, at least in part, environmentally mediated. At present, adap-

tive hypotheses for this skeleton remain untested. However, the

observation that many specimens (approx. 20%) had injured

adipose fins (electronic supplementary material, table S1) and

the fact that injuries were nearly always located at the posterior

part of the fin suggests that evolution and development of skel-

eton in these fins might reflect a response to injury and potential

fin biting by other fishes.

Tissues and organs that originate by translocation high-

light the challenges of diagnosing structures as either

iterative homologues or morphological novelties. Develop-

mental context, in this case position, can dramatically alter

the phenotype of an iterative homologue, including many

key features of its shape, organization and growth patterns.

Even the induction of the homologue can be switched from

normal embryonic development to being plastically gener-

ated in adulthood. These data raise key questions about

how translocation of body parts can lead to apparent mor-

phological novelty.
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